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Evolving network with different edges
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We propose a scale-free network similar to Barabasi-Albert networks but with two different types of edges.
This model is based on the idea that in many cases there are more than one kind of link in a network and when
a new node enters the network both old nodes and different kinds of links compete to obtain it. The degree
distribution of both the total degree and the degree of each type of edge is analyzed and found to be scale-free.

Simulations are shown to confirm these results.
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I. INTRODUCTION

Recently complex networks have attracted interest in
many fields, includes biology, sociology, physics, etc. Con-
tributions include the analysis of random networks with
Erdos-Renyi graphs [1] and small world networks such as
the Watts-Strogatz network [1-7]. However, real world net-
works such as the Internet, the movie actor network, and
science collaboration networks (see [5,8]) all show a power-
law degree distribution property, which cannot be explained
by the two models mentioned. A scale free model [9,10] that
displays this property was proposed by Barabasi and Albert
(BA) in 1999. On the other hand, this model suffers a draw-
back in that the exponent of the power law is always fixed,
while in real networks it varies. Further study has shown that
preferential attachment plays a key role in the scaling prop-
erties of the evolving network [9-13]. In 2000, Dorogovtsev,
Mendes, and Samukhin used a different initial attractiveness
to vary the power-law exponent [13].

Social network models describe complex human interac-
tions. To model the complicated relationships between ele-
ments of social networks, researchers introduced multiple
type of vertices into network models [14]. Weighted edges
representing varying kinds of social relationships were also
introduced [15]. Both models show scaling properties. It is
challenging to find more fundamental network structures.

Similarly, our model can be understood from another per-
spective. Considering the Internet as a network, edges may
be partitioned based on what kind of connection they repre-
sent [e.g., hypertext transfer protocol (HTTP), file transfer
protocol (FTP), etc.]. Generally, different types of links need
to be added to growing networks, where competition exist
between different links as well as the nodes. It is attractive to
discover the topologies of the whole network and different
subnetworks containing only one type of two edge, and to
consider the relation between different edges. In the model
we construct, the entire network is similar to the partial pref-
erence BA model. The significant difference is that we add
some tunable parameters into the preferential attachment to
alter the exponent of the power-law degree distribution and
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the shift constant of the degree distribution function.

Our work begins with the discussion of a scale-free net-
work similar to the BA model with a change of the prefer-
ential attachment. This is a special example of the growing
networks put forward by Dorogovstev, Mendes, and Sam-
ukhin in 2000 [13] in which they add a constant in the pref-
erential attachment term. In our main work, the tunable pa-
rameters in the model play different roles in different edge
preferential attachments, and are regarded as a weight on the
attractiveness of different links in the evolving network. The
research produces some interesting results: the whole net-
work and the two subnetworks all evolve just the same as the
ordinary scale-free network, while the two kinds of links
connected to a certain node always differ. The degree distri-
butions of the two subnetworks are unequal.

II. MODEL AND THEORETICAL APPROACH

Before introducing our findings, we first review the work
by Dorogovstev, Mendes, and Samukhin (DMS) in 2000
[13]. In their paper, the preferential attachment in the BA
model is no longer fixed; instead, a changeable initial attrac-
tiveness, defined at each site, together with the incoming
links of the site, determines the probability whether a new
link will point to this site. In the long-time limit, the expo-
nent of the degree distribution varies from 2 to %, depending
on the initial attractiveness. In this paper, we will make a
simple and clear revision, and attain concise results.

The preferential attachment in the BA model is changed

such that the possibility of a site’s degree increasing is now
ki+f

proportional to H(k,»)=m2(k—+ff), where k; is the degree of site

i while f is a given constant. This model may be considered
as a special case of the model in [13] if one takes their A as
m+f. DMS found the degree distribution to have the expo-

©) . . .
nent —(2+a), where a=A7. A linear shift ma=A© is found
in the distribution function

I'm+1a+1]

Ty @+ ma ™)

P(q) = (1+a)

For our model
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where m is the number of links added from each new node.
We solve this system of differential equations for each k; by
simple separation of variables. Then by asymptotic approxi-
mation of that solution, as # approaches infinity, we can con-
clude the degree distribution,

P(k) = (2 + i)(m + f)ZHIm)(f 4 )= GfIm), 3)

Compare the degree functions (1) and (3), taking the power
term into account, and we find that the two results are the
same in essence. In our derivation the tunable parameter is f,
while in [13] it is the initial attractiveness A”). By transform-
ing A© to m+f the two functions show the same property.
This transformation is reasonable; A© should be the initial
degree a site has when it enters the network, which is exactly
m+f. In [13], the exponent y=2+a varies from 2 to %, while
in our model, y=3+£, -m< f<o gives the same range.
The advantage in using continuum theory is that no special
function appears. Another difference between our model and
the model in [13] is that we consider the network as undi-
rected while in [13] networks are considered as directed.

We now propose here the details of our network model.
Let our graph have two kinds of edges, as follows: at each
time interval, a new node is added to the network connecting
to m existing nodes. We divide the m edges into two types, X
and Y. We propose that node i in the original network con-
nects to the new node with preferential attachments:

ax;  xi+yi+f+gy
=m ’ (4)
it (S x4y )

@zmxi"')’i"'f—gyi
GO IERSRY)

where x; represents the number of X edges node i has con-
nected (at time ¢) and y; represents the number of Y edges,
with x;+y;=k;; we do not assume this to be exactly the re-
flection of real world networks, but just a step forward in the
direction of finding out complex relations between networks
that share the same nodes but different types of edges.

Here in our model both nodes and different kinds of edges
compete. Although any newly added node would have a
fixed number of m new adding links, it is the parameters in
our equations above that decide the portion of one kind of
links versus the other. This idea represents the fact that in
real life networks, even though the strong nodes tend to have
more and more links, if we take a look at some other aspect
and some other kind of links that strong guy might not be
that strong since any one would only have a finite and lim-
ited effect. More emphasis on one kind of link would de-
crease the focus on the other and thus reduce the number of
links of the other kind.

()
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The parameter g here plays the key role in determining
the relation between X and Y. When g is very small, X and Y
behave the same. When g becomes relatively large, new
edges will always be added as X edges.

First, we discuss the Y subnetwork. We add m edges at
every time step, so

2 (it yi+f)=C2m+for. (6)
Substituting this into Eq. (5) yields
t ml(2m+f)
(m+)\ ~ -8y
9y; li
—=m . (7)
ot 2(2m + f)t
Then
/(2m+f)
y;= m+f (£>m " + const lme2@mn] )
! 2+ g ti

When ¢ approaches infinity, this becomes

m +f ¢ m/(2m+f)
i~ (“) . )
2+ 8 ti
Then we obtain
(2+f/m)
+
Py(y;<y)= P|:ti > y‘(“f”")(m—f) t]
; 2+g¢
(2+f/m)
=1= ! y—(2+f7m)(m_+f) t. (10)
my+t 2+g
For large ¢, P(y;) is approximated by
2+flm
P(y)= m ~ (2 + i)(m_-'-f)( i )y—(3+f/m)'
Y dy m/\2+g
(11)

The degree distribution of Y is a power law with the same
exponent as that of total degree distribution but without the
shift f. Then, for the X subnetwork we obtain

xi=ki—y;= —g(m +f)<—> — f = const ¢ lms/2@mN],
2 + 8 ti
(12)
In the long-time limit, we neglect the r"¢22+)] term, and
obtain
1+ g t [m/(2m+f)]
Xi=—(m+f)<—) -f (13)
The degree distribution of the X subnetwork is
1+ (2+fIm)
P = (z + i)(—g(m +f)) (x4 1),
m/\2+g
(14)

It is a power-law distribution with shift f. From the calcula-
tions above, we obtain the ratios of total degree to x degree
and y degree
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Pm(k—f).Px(k—f).Py(k)—1.(2+g) )

(15)

The subscript x+y in P, (k) means the total degree.

III. NUMERICAL SIMULATIONS

Figures 1(a)-1(c) show the results of simulations of net-
works with N=10° nodes, m=35, and f=-2,2,5. The simu-
lated exponents agree with the theoretical results. The pre-
dicted ratio of x degree to y degree is also confirmed by
numerical simulations (see Fig. 2). One should notice that in
the figures, we have made shifts for x degree distributions
and total degree distributions from P,(k) and P, (k) to
P, (k—f) and P, (k—f), respectively. Therefore, their log-log
plots behave as straight lines parallel to those of y degree.

However, we found that when we take g to be small, the
simulations differ from the theoretical predictions. With
small g, when f is positive, the x degree is larger than ex-
pected while the y degree matches the predicted value [see
Fig. 3(a)]; and when f is negative, the y degree is larger than
expected while the x degree is as expected [see Fig. 3(b)].
We neglected the last term of Eq. (8), but when g is small,
decay of this term is slow. This explains the discrepancy at
small g.

We also looked at the fluctuation of x degree x; to theo-
retical value as a function of total degree k. It illustrates how
the competition generates heterogeneity in edge composition
of each vertex. We calculated the relative standard deviation
compared to theory: the fluctuations decrease quickly with
the increase of total degree (see Fig. 4).

IV. STUDY OF PARAMETERS

The parameter m is treated as a fixed number in a certain
network, for we can identify at least vaguely how many links
are added in each time interval. The value of f varies from
—m to o, but if f is too large both the total degree distribution
and the X degree distribution approach exponential,

(k + f)—(3+f/m) ~ f—(3+f/m) o G+m)KIf) — f—(3+f/m) oK(1m31f)
(16)

If f>m, the characteristic degree of total network and X
subnetwork is m. In addition, the r"82@m+)] term will not
decay fast enough to be neglected if g, f, and m are chosen
such that mg/2(2m+f) is too small.

The most intriguing parameter is g. As mentioned, g
should not be chosen to make the #1227+ term too large.
Simulations have shown that small g makes the degree dis-
tribution depart from predictions. g should not be too large,
as well; a very large g leads the network to have few Y links,
as we have found in simulations. Based on these above rea-
sons, we need g to be big enough to make the ¢7¢/22m+/)]

term small enough to be neglected; but g should not be so
Xikyitfreyi Xikyitf-gyi
2(Zxjty+f) 2(SxyHf)’
which leads to a network having few Y edges.

I ke 2= larger than 2=
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FIG. 1. (Color online) Simulations of the distribution of total
degree, X degree, and Y degree, for networks of 10° nodes and m
=5. The lines are linear fits of the main part of the data. (a) f=-2,
g=3. The slopes of the lines are y,=-2.5, y,=-2.5, and y,=-2.6.
The prediction is y=-2.6. (b) f=2, g=1. The slopes of the lines are
Y=-3.3, y,==3.4, and y,=-3.4. The prediction is y=-3.4. (c) f
=5, g=2. The slopes of the lines are Y=-3.8, ,=—4.0, and y,=
—-3.9. The prediction is y=—4.
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FIG. 2. The ratios of the distribution of X degree to the distri-
bution of Y degree with respect to different g. The curves are the-
oretical predictions. N=10° nodes and m=5. (a) f=-2; (b) f=2; (c)
f=5.

For a given node with degree k at given time, the prob-
ability p, (k) that how many X edges it has follows Eq. (4).
Figure 4 shows the fluctuation decreases quickly with k. It
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FIG. 3. (Color online) The degree distribution of total degree, x
degree, and y degree with small g=0.1, for networks of 10% nodes
and m=5. (a) f=-2, (b) f=2.

seems that the distribution of fluctuation should follow the
binomial distribution. However, here the degree of a node is
varying with time. It increases from m to k and p, varied
synchronously. This leads to the fact that the fluctuation of
the number of X edges is much smaller than that of the
binomial distribution.

V. DISCUSSIONS

The mathematical expressions of degree distribution of
the subnetworks provide deep insight into the dynamics of
evolving systems. We build a competitive environment
where not only nodes but also different types of edges com-
pete. This model can reflect many properties of social net-
work. A newly added node has a fixed number of m initial
edges. However, it is the other nodes that decided how many
X edges and Y edges there would be. Obviously, other nodes
compete for these m edges based on what they already have.
For instance, let X edge denotes financial relationship be-
tween individual persons, and Y represents other connection.
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FIG. 4. (Color online) The relative standard deviation of X de-
gree respective to total degree, for networks of 10° nodes and m
=5.

Rich people tend to have more financial relationship with
other people, while interestingly, more financial links signi-
fies the richness. But when we focus on other links between
people, rich people are not necessarily so lucky. Due to the
limitation of personal capability, time, and devotion, one
cannot have infinite connections with others. Therefore, it is
at the expense of less Y edges to obtain more X edges, and
vice versa. The above study shows the relationship between
X and Y edges.

An important characteristic of this model is that the de-
gree distribution of the X subnetwork shows a linear shift
while the Y subnetwork does not. Simulations confirm this,
although the exact value of the shift may has some errors,
due to the application of mean-field approximation. This dif-
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ference between the X and Y subnetwork comes from the
different preferential attachment.

These results may be generalized to directed networks.
Every time step, we introduce m directed edges. Then

> (ki+ ) =(m+pr. (17)

Similarly to the undirected result, we obtain
Py (k)= (1 * i)f“f”"(k £ (1)

The degree distributions of the X network and Y network are

_ (1+f/m)
P.(k)= (1 + i) (M) (k +f)—(2+f/m),
m

2+¢
(19)
f 1 (1+f/m)
P (k)= (1 + —) (—) = 2ftm), (20)
m/\2+g

The ratios of total degree to X degree and Y degree are

Px+y(k _f):Px(k _f)Py(k)
1+f/m
) .21

\ f2+g) fQ2+g)
Compared with the results of undirected network (15), the
proportion of Y edges is larger than in the undirected net-
work.
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